Vector
De Wikipedia, la enciclopedia libre
En física, matemáticas e ingeniería, un vector (también llamado vector euclidiano o vector geométrico) es una herramienta geométrica utilizada para representar una magnitud física definida por un módulo (o longitud) y una dirección (u orientación).[1] [2] [3] [4]
Los vectores se pueden representar geométricamente como segmentos de recta dirigidos o flechas en el plano o en el espacio .
Ejemplos:
Así, un vector perteneciente a un espacio se representa como: , donde .
Un vector también se puede ver desde el punto de vista de la geometría como vector geométrico (usando frecuentemente el espacio tridimensional ó bidimensional ).
Un vector fijo del plano es un segmento orientado, en el que hay que distinguir dos características:[1] [2] [3]
Las magnitudes escalares quedan representadas por el ente matemático más simple; por un número. Las magnitudes vectoriales quedan representadas por un ente matemático que recibe el nombre de vector. En un espacio euclidiano, de no más de tres dimensiones, un vector se representa por un segmento orientado. Así, un vector queda caracterizado por los siguientes elementos: su longitud o módulo, siempre positivo por definición, y su dirección, la cual puede ser representada mediante la suma de sus componentes vectoriales ortogonales, paralelas a los ejes de coordenadas; o mediante coordenadas polares, que determinan el ángulo que forma el vector con los ejes positivos de coordenadas.[5] [6]
Se representa como un segmento orientado, con una dirección, dibujado de forma similar a una "flecha". Su longitud representa el módulo del vector y la "punta de flecha" indica su dirección.[1] [2] [3]
Además de estas convenciones los vectores unitarios o versores, cuyo módulo es la unidad, se representan frecuentemente con un circunflejo encima, por ejemplo .
En coordenadas cartesianas, los vectores unitarios se representan por , , , paralelos a los ejes de coordenadas x, y, z positivos. Las componentes del vector en una base vectorial predeterminada pueden escribirse entre paréntesis y separadas con comas:
o expresarse como una combinación de los vectores unitarios definidos en la base vectorial. Así, en un sistema de coordenadas cartesiano, será
Estas representaciones son equivalentes entre sí, y los valores ax, ay, az, son las componentes de un vector que, salvo que se indique lo contrario, son números reales.
Una representación conveniente de las magnitudes vectoriales es mediante un vector columna o un vector fila, particularmente cuando están implicadas operaciones matrices (tales como el cambio de base), del modo siguiente:
Con esta notación, los vectores cartesianos quedan expresados en la forma:
El resultado de su suma o de su diferencia se expresa en la forma
y ordenando las componentes,
Con la notación matricial sería
Conocidos los módulos de dos vectores dados, y , así como el ángulo θ que forman entre sí, el módulo de es:
La deducción de esta expresión puede consultarse en deducción del módulo de la suma.
Partiendo de la representación gráfica del vector, sobre la misma línea de su dirección tomamos tantas veces el módulo de vector como indica el escalar.
Sean un escalar y un vector, el producto de por se representa y se realiza multiplicando cada una de las componentes del vector por el escalar; esto es,
Con la notación matricial sería
Calculamos la derivada ordinaria del vector con respecto de la variable t, calculando la derivada de cada una de sus componentes como si de escalares se tratara:
teniendo en cuenta que los vectores unitarios son constantes en módulo y dirección.
Con notación matricial sería
Veamos un ejemplo de derivación de un vector, partiendo de una función vectorial:
Esta función representa una curva helicoidal alrededor del eje z, de radio unidad, como se ilustra en la figura. Podemos imaginar que esta curva es la trayectoria de una partícula y la función representa el vector posición en función del tiempo t. Derivando tendremos:
Realizando la derivada:
La derivada del vector posición respecto al tiempo es la velocidad, así que esta segunda función determina el vector velocidad de la partícula en función del tiempo, podemos escribir:
Este vector velocidad es un vector tangente a la trayectoria en el punto ocupado por la partícula en cada instante. Si derivásemos de nuevo obtendríamos el vector aceleración.
Cuando se emplea una base fija (coordenadas cartesianas) la derivada covariante coincide con la derivada ordinaria. Por ejemplo cuando se estudia el movimiento de una partícula desde un sistema de referencia no inercial en rotación, las aceleraciones de Coriolis y centrípeta se deben a los factores que contienen .
En física esta descomposición se usa en diferentes contextos como descomponer la aceleración en una componente paralela a la velocidad y otra componente perpendicular a la misma. También el tensión mecánica en un punto sobre un plano puede descomponerse en una componente normal al plano y otra paralela.
También dado un campo vectorial definido sobre un dominio de Lipschitz, acotado, simplemente conexo y de cuadrado integrable admite la llamada descomposición de Helmholtz como suma de un campo conservativo y un campo solenoidal:
Ahora, supongamos que giramos el sistema de ejes coordenados, manteniendo fijo el origen del mismo, de modo que obtengamos un nuevo triedro ortogonal de ejes (x′, y′, z′), con una base vectorial asociada definida por los versores . Las componentes del vector en esta nueva base vectorial serán:
La operación de rotación de la base vectorial siempre puede expresarse como la acción de un operador lineal (representado por una matriz) actuando sobre el vector (multiplicando al vector):
que es la matriz de transformación para el cambio de base vectorial.
Al hacer la aplicación del operador, es decir, al multiplicar la matriz por el vector, obtendremos la expresión del vector en la nueva base vectorial:
siendo
En mecánica newtoniana generalmente se utilizan vectores genuinos, llamados a veces vectores polares, junto con pseudovectores, llamados vectores axiales que realmente representan el dual de Hodge de magnitudes tensoriales antisimétricas. El momento angular, el campo magnético y todas las magnitudes que en cuya definición interviene el producto vectorial son en realidad pseudovectores o vectores axiales.
En teoría especial de la relatividad, sólo los vectores tetradimensionales cuyas medidas tomadas por diferentes observadores pueden ser relacionadas mediante alguna transformación de Lorentz constituyen magnitudes vectoriales. Así las componentes de dos magnitudes vectoriales medidas por dos observadores y deben relacionarse de acuerdo con la siguiente relación:
Donde son las componentes de la matriz que da la transformación de Lorentz. Magnitudes como el momento angular, el campo eléctrico o el campo magnético o el de hecho en teoría de la relatividad no son magnitudes vectoriales sino tensoriales.
Los vectores se pueden representar geométricamente como segmentos de recta dirigidos o flechas en el plano o en el espacio .
Ejemplos:
- La velocidad con que se desplaza un móvil es una magnitud vectorial, ya que no queda definida tan sólo por su módulo (lo que marca el velocímetro, en el caso de un automóvil), sino que se requiere indicar la dirección hacia la que se dirige.
- La fuerza que actúa sobre un objeto es una magnitud vectorial, ya que su efecto depende, además de su intensidad o módulo, de la dirección en la que opera.
- El desplazamiento de un objeto.
[editar] Conceptos fundamentales
Esta sección explica los aspectos básicos, la necesidad de los vectores para representar ciertas magnitudes físicas, los componentes de un vector, la notación de los mismos, etc.[editar] Definición
Se llama vector de dimensión a una tupla de números reales (que se llaman componentes del vector). El conjunto de todos los vectores de dimensión se representa como (formado mediante el producto cartesiano).Así, un vector perteneciente a un espacio se representa como: , donde .
Un vector también se puede ver desde el punto de vista de la geometría como vector geométrico (usando frecuentemente el espacio tridimensional ó bidimensional ).
Un vector fijo del plano es un segmento orientado, en el que hay que distinguir dos características:[1] [2] [3]
- dirección: la orientación de la recta
- módulo: la longitud del segmento
[editar] Magnitudes escalares y vectoriales
Frente a aquellas magnitudes físicas, tales como la masa, la presión, el volumen, la energía, la temperatura, etc; que quedan completamente definidas por un número y las unidades utilizadas en su medida, aparecen otras, tales como el desplazamiento, la velocidad, la aceleración, la fuerza, el campo eléctrico, etc., que no quedan completamente definidas dando un dato numérico, sino que llevan asociadas una dirección. Estas últimas magnitudes son llamadas vectoriales en contraposición a las primeras llamadas escalares.Las magnitudes escalares quedan representadas por el ente matemático más simple; por un número. Las magnitudes vectoriales quedan representadas por un ente matemático que recibe el nombre de vector. En un espacio euclidiano, de no más de tres dimensiones, un vector se representa por un segmento orientado. Así, un vector queda caracterizado por los siguientes elementos: su longitud o módulo, siempre positivo por definición, y su dirección, la cual puede ser representada mediante la suma de sus componentes vectoriales ortogonales, paralelas a los ejes de coordenadas; o mediante coordenadas polares, que determinan el ángulo que forma el vector con los ejes positivos de coordenadas.[5] [6]
Se representa como un segmento orientado, con una dirección, dibujado de forma similar a una "flecha". Su longitud representa el módulo del vector y la "punta de flecha" indica su dirección.[1] [2] [3]
[editar] Notación
Las magnitudes vectoriales se representan en los textos impresos por letras en negrita, para diferenciarlas de las magnitudes escalares que se representan en cursiva. En los textos manuscritos, las magnitudes vectoriales se representan colocando una flecha sobre la letra que designa su módulo (el cual es un escalar). Ejemplos:- ... representan, respectivamente, las magnitudes vectoriales de módulos A, a, ω, ... El módulo de una magnitud vectorial también se representa encerrando entre barras la notación correspondiente al vector: ...
- En los textos manuscritos se escribe: ... para los vectores y ... o ... para los módulos.
Además de estas convenciones los vectores unitarios o versores, cuyo módulo es la unidad, se representan frecuentemente con un circunflejo encima, por ejemplo .
[editar] Clasificación de vectores
Según los criterios que se utilicen para determinar la igualdad o equipolencia de dos vectores, pueden distinguirse distintos tipos de los mismos:- Vectores libres: no están aplicados en ningún punto en particular.
- Vectores deslizantes: su punto de aplicación puede deslizar a lo largo de su recta de acción.
- Vectores fijos o ligados: están aplicados en un punto en particular.
- Vectores unitarios: vectores de módulo unidad.
- Vectores concurrentes: sus rectas de acción concurren en un punto propio o impropio (paralelos).
- Vectores opuestos: vectores de igual magnitud, pero dirección contraria.
- Vectores colineales: los vectores que comparten una misma recta de acción.
- Vectores coplanarios: los vectores cuyas rectas de acción son coplanarias (situadas en un mismo plano).
[editar] Componentes de un vector
Un vector en el espacio se puede expresar como una combinación lineal de tres vectores unitarios o versores perpendiculares entre sí que constituyen una base vectorial.En coordenadas cartesianas, los vectores unitarios se representan por , , , paralelos a los ejes de coordenadas x, y, z positivos. Las componentes del vector en una base vectorial predeterminada pueden escribirse entre paréntesis y separadas con comas:
o expresarse como una combinación de los vectores unitarios definidos en la base vectorial. Así, en un sistema de coordenadas cartesiano, será
Estas representaciones son equivalentes entre sí, y los valores ax, ay, az, son las componentes de un vector que, salvo que se indique lo contrario, son números reales.
Una representación conveniente de las magnitudes vectoriales es mediante un vector columna o un vector fila, particularmente cuando están implicadas operaciones matrices (tales como el cambio de base), del modo siguiente:
Con esta notación, los vectores cartesianos quedan expresados en la forma:
[editar] Representación gráfica de vectores
Aunque hay quien no recomienda el uso de gráficos para evitar la confusión de conceptos y la inducción al error, sin investigación que lo corrobore, también es cierto que la memoria se estimula con mejores resultados. Para ello veamos las notas:- Llamaremos vector a la representación visual con el símbolo de flecha( un segmento y un triángulo en un extremos).
- La rectitud visual de una flecha o curvatura de la misma, no la hace diferente en símbolo si los dos extremos permanecen en el mismo lugar y orden.
- El que una flecha cierre en sí misma, indica la ausencia de efectos algebraicos.
- Para visualizar la suma de vectores se hará encadenándolos, es decir, uniendo el extremo que tiene un triángulo(final) del primer vector con el extremo que no lo tiene(origen) del segundo vector manteniendo la dirección y distancia, propias al espacio, de sus dos extremos, ya que estas dos cualidades los distingue visualmente de otros vectores.
- La definición suma de vectores en el orden u+v produce otro vector, es como encadenar, siempre visualmente, un vector u y luego uno v. Diremos que u+v se simplifica como un vector w o que w descompone como suma de vectores u y v.
-
- 1) Decir que u+v=v+u, es exigir que las dos sumas simplifiquen en el mismo vector, en negro. Véase que en física los vectores en rojo simulan la descomposición de fuerzas ejercidas por el vector negro en su origen, y se representa con un paralelogramo.
-
- 2) Decir que u+(v+w)=(u+v)+w, es exigir que las simplificaciones de sumas de vectores puedan ser optativas en cualquier cadena de sumas.
-
- 3) Decir que existe un vector 0 tal que u+0=u, equivale a exigir que exista un vector incapaz de efectuar, mediante la suma, modificación alguna a todos los vectores.
-
- 4) Decir que u+(-u)=0, es exigir la existencia de un elemento, -u, que sumado a u simplifique en un vector cero.
- La definición producto por escalar produce otro vector; es como modificar el extremo final del vector u, siempre visualmente.
- Los escalares se representarán con una línea de trazos a modo, exclusivamente, de distinción ya que no siempre pertenecen al espacio de vectores.
-
- a)Decir que a(bu)=(ab)u, es exigir que los productos encadenados a(b(u)) pueden simplificarse como uno, c=ab, luego (ab)u queda como cu.
-
- b) Decir que existe el escalar 1 tal que 1u=u, equivale a decir exista un escalar incapaz de efectuar, mediante producto, modificación alguna a todos los vectores.
-
- c) Decir que a(u+v)=au+av, es exigir la propiedad distributiva respecto la suma vectorial.
-
- d) Decir que (a+b)u=au+bu, es exigir la propiedad distributiva respecto la suma escalar.
[editar] Operaciones con vectores
[editar] Suma de vectores
Para sumar dos vectores libres (vector y vector) se escogen como representantes dos vectores tales que el extremo final de uno coincida con el extremo origen del otro vector.[editar] Método del paralelogramo
Este método permite solamente sumar vectores de a pares. Consiste en disponer gráficamente los dos vectores de manera que los orígenes de ambos coincidan en un punto, trazando rectas paralelas a cada uno de los vectores, en el extremo del otro y de igual longitud, formando así un paralelogramo (ver gráfico a la derecha). El resultado de la suma es la diagonal de dicho paralelogramo que parte del origen común de ambos vectores.[editar] Método del triángulo
Consiste en disponer gráficamente un vector a continuación de otro; es decir, el origen de cada uno de los vectores se lleva sobre el extremo del otro. El vector resultante es aquél que nace en el origen del primer vector y termina en el extremo del último.[editar] Método analítico para la suma y diferencia de vectores
Dados dos vectores libres,El resultado de su suma o de su diferencia se expresa en la forma
y ordenando las componentes,
Con la notación matricial sería
Conocidos los módulos de dos vectores dados, y , así como el ángulo θ que forman entre sí, el módulo de es:
La deducción de esta expresión puede consultarse en deducción del módulo de la suma.
[editar] Producto de un vector por un escalar
El producto de un vector por un escalar es otro vector cuyo módulo es el producto del escalar por el módulo del vector, cuya dirección es igual a la del vector, o contraria a este si el escalar es negativo.Partiendo de la representación gráfica del vector, sobre la misma línea de su dirección tomamos tantas veces el módulo de vector como indica el escalar.
Sean un escalar y un vector, el producto de por se representa y se realiza multiplicando cada una de las componentes del vector por el escalar; esto es,
Con la notación matricial sería
[editar] Producto escalar
[editar] Producto vectorial
[editar] Derivada ordinaria de un vector
Dado un vector que es función de una variable independienteCalculamos la derivada ordinaria del vector con respecto de la variable t, calculando la derivada de cada una de sus componentes como si de escalares se tratara:
teniendo en cuenta que los vectores unitarios son constantes en módulo y dirección.
Con notación matricial sería
Veamos un ejemplo de derivación de un vector, partiendo de una función vectorial:
Esta función representa una curva helicoidal alrededor del eje z, de radio unidad, como se ilustra en la figura. Podemos imaginar que esta curva es la trayectoria de una partícula y la función representa el vector posición en función del tiempo t. Derivando tendremos:
Realizando la derivada:
La derivada del vector posición respecto al tiempo es la velocidad, así que esta segunda función determina el vector velocidad de la partícula en función del tiempo, podemos escribir:
Este vector velocidad es un vector tangente a la trayectoria en el punto ocupado por la partícula en cada instante. Si derivásemos de nuevo obtendríamos el vector aceleración.
[editar] Derivada covariante de un vector
Cuando en lugar de emplear una "base fija" en todo el dominio de un vector se usan "bases móviles" como cuando se emplean coordenadas curvilíneas la variación total de un vector dependiente del tiempo depende no sólo de la variación de componentes como en el caso de la derivada ordinaria sino también de la variación de la orientación de la base. La variación total se llamada derivada covariante:Cuando se emplea una base fija (coordenadas cartesianas) la derivada covariante coincide con la derivada ordinaria. Por ejemplo cuando se estudia el movimiento de una partícula desde un sistema de referencia no inercial en rotación, las aceleraciones de Coriolis y centrípeta se deben a los factores que contienen .
[editar] Ángulo entre dos vectores
El ángulo determinado por las direcciones de dos vectores y viene dado por:[editar] Descomposiciones de un vector
Dado un vector y una dirección de referencia dada por un vector unitario se puede descomponer el primer vector en una componente paralela y otra componente perpendicular a la dirección de referencia:En física esta descomposición se usa en diferentes contextos como descomponer la aceleración en una componente paralela a la velocidad y otra componente perpendicular a la misma. También el tensión mecánica en un punto sobre un plano puede descomponerse en una componente normal al plano y otra paralela.
También dado un campo vectorial definido sobre un dominio de Lipschitz, acotado, simplemente conexo y de cuadrado integrable admite la llamada descomposición de Helmholtz como suma de un campo conservativo y un campo solenoidal:
[editar] Cambio de base vectorial
En matemáticas las rotaciones son transformaciones lineales que conservan las normas en espacios vectoriales en los que se ha definido una operación de producto interior. La matriz de transformación tiene la propiedad de ser una matriz unitaria, es decir, es ortogonal y su determinante es 1. Sea un vector expresado en una sistema de coordenadas cartesianas (x, y, z) con una base vectorial asociada definida por los versores ; esto es,Ahora, supongamos que giramos el sistema de ejes coordenados, manteniendo fijo el origen del mismo, de modo que obtengamos un nuevo triedro ortogonal de ejes (x′, y′, z′), con una base vectorial asociada definida por los versores . Las componentes del vector en esta nueva base vectorial serán:
La operación de rotación de la base vectorial siempre puede expresarse como la acción de un operador lineal (representado por una matriz) actuando sobre el vector (multiplicando al vector):
que es la matriz de transformación para el cambio de base vectorial.
- Ejemplo
Al hacer la aplicación del operador, es decir, al multiplicar la matriz por el vector, obtendremos la expresión del vector en la nueva base vectorial:
siendo
[editar] Requerimientos físicos de las magnitudes vectoriales
No cualquier n-tupla de funciones o números reales constituye un vector físico. Para que una n-tupla represente un vector físico, los valores numéricos de las componentes del mismo medidos por diferentes observadores deben transformarse de acuerdo con ciertas relaciones fijas.En mecánica newtoniana generalmente se utilizan vectores genuinos, llamados a veces vectores polares, junto con pseudovectores, llamados vectores axiales que realmente representan el dual de Hodge de magnitudes tensoriales antisimétricas. El momento angular, el campo magnético y todas las magnitudes que en cuya definición interviene el producto vectorial son en realidad pseudovectores o vectores axiales.
En teoría especial de la relatividad, sólo los vectores tetradimensionales cuyas medidas tomadas por diferentes observadores pueden ser relacionadas mediante alguna transformación de Lorentz constituyen magnitudes vectoriales. Así las componentes de dos magnitudes vectoriales medidas por dos observadores y deben relacionarse de acuerdo con la siguiente relación:
Donde son las componentes de la matriz que da la transformación de Lorentz. Magnitudes como el momento angular, el campo eléctrico o el campo magnético o el de hecho en teoría de la relatividad no son magnitudes vectoriales sino tensoriales.
No hay comentarios:
Publicar un comentario